MI-0178

Beta Function Distortions from Systematic and Random Gradient Errors in Combined Function and Quadrupole Magnets for Lattice RRV7

S. D. Holmes July 31, 1996

This note updates information presented in MI-0160 to reflect the newly considered lattice, RRV7. The primary change relative to the lattice RRV6 is that the phase advance/cell has been adjusted slightly to reduce sensitivity to systematic skew quadrupole and octupole components. Tables 1 and 2 are affected and presented here. It should be noted that these tables now present gradient errors in Fermilab "units" rather than as a percentage gradient error, and that roll sensitivity is now referenced to 0.5 mr.

Table 1: Recycler tune shifts, rms β -function distortions, and minimum tune split arising from a <u>systematic</u> gradient and skew quadrupole error of $1x10^{-4}$ of nominal in the combined function and quadrupole magnets. Recycler lattice RRV7.

	Δνχ	Δνχ	$\Delta \beta_{X}/\beta_{X}(rms)$	$\Delta \beta_{V}/\beta_{y}$ (rms)	∆∨min
		, _	<u>-μχ. εχ(πησ)</u>	–ругу(ппз)	
Gradient Magnet (4.1m)					
integrated gradient Δ _{B'L/BL} =.0001/inch	.028	028	28x10 ⁻⁴	35x10 ⁻⁴	
skew quadrupole ΔB' _S L/BL=.0001/inch					16x10 ⁻⁴
Gradient Magnet (2.7m)					
integrated gradient Δ _{B'L} /BL=.0001/inch	.0096	0096	21x10 ⁻⁴	33x10 ⁻⁴	
skew quadrupole ΔB' _S L/BL=.0001/inch					2x10 ⁻⁴
Quadrupole magnets					
integrated strength Δ _{B'L} /B'L=.0001	.0004	0004	2.7x10 ⁻⁴	3.9x10 ⁻⁴	

Table 2: Recycler rms β -function distortions, and minimum tune split arising from a <u>random</u> gradient errors of $1x10^{-4}$ of nominal, a <u>random</u> transverse displacement of 0.25 mm (in the long combined function magnets), and a 0.1 mr roll in the combined function and quadrupole magnets. Recycler lattice RRV7.

	$\Delta \beta_{\rm X}/\beta_{\rm X} ({ m rms})$	$\Delta \beta_{ m y}/\beta_{ m y(rms)}$	Δνmin
Gradient Magnet (4.1m)			
integrated gradient σ _{B'L/BL} =.0001/inch	158x10 ⁻⁴	174x10 ⁻⁴	
transverse displacement σ _d =.00025 m	25x10 ⁻⁴	44x10 ⁻⁴	
skew quadrupole ΔΒ' _S L/BL=.0001/inch			96x10 ⁻⁴
roll σ _φ =.0005			31x10 ⁻⁴
Gradient Magnet (2.7m)			
integrated gradient σ _{B'L/BL} =.0001/inch	70x10 ⁻⁴	71x10 ⁻⁴	
skew quadrupole ΔΒ' _S L/BL=.0001/inch			39x10 ⁻⁴
roll $\sigma_{\dot{\varphi}}$ =.0005			24x10 ⁻⁴
Quadrunala magnata			
Quadrupole magnets integrated strength σ _{B'L} /B'L=.0001	4.9X10 ⁻⁴	5.0X10 ⁻⁴	
roll σ_{ϕ} =.0005			14X10 ⁻⁴

Conclusions

Tables 1 and 2 show the rms β -function distortion around the ring and the minimum tune split expected for the designated errors. With the exception of the tune split arising from a systematic skew quadrupole component, the sensitivities are very similar to RRV6. The splitting of the horizontal and vertical phase advance has reduced the coupling sensitivity in RRV7 by nearly a factor of 50 relative to RRV6.